

BINAH DEVELOPMENT PTY LTD

Acid Sulfate Soil Assessment

26 Elizabeth Street, Liverpool, NSW

Report E23796.E14_Rev0 28 May 2018

REPORT DISTRIBUTION

Acid Sulfate Soils Assessment 26 Elizabeth Street, Liverpool NSW

El Report No.: E23796.E14_Rev0 Date: 28 May 2018

Copie	es	Recipient			
1	Soft Copy (PDF – Secured, issued by email)	Binah Development Pty Ltd Suite 7, Level 3, 26 Castlereagh Street, Liverpool			
	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, Pyrmont NSW 2009			

Author

Technical Reviewer

SHARON LI Environment	al Scientist	MALCOLM DALE Senior Principal – Contar	minated Land			
Revision	Details	Date	Amended By			
0	Original	28 May 2018	-			

© 2018 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

TABLE OF CONTENTS

1.	INTF	RODUCTION	1			
	1.1	BACKGROUND AND PROPOSED DEVELOPMENT	1			
	1.2	PROJECT OBJECTIVES	1			
	1.3	SCOPE OF WORKS	1			
2.	DES	KTOP REVIEW	2			
	2.1	PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING	2			
	2.2	REGIONAL SETTING	3			
	2.3	ACID SULFATE SOIL RISK MAPPING	3			
	2.4	GEOMORPHIC AND SITE CHARACTERISTICS	3			
3.	FIELD WORK					
	3.1	SUBSURFACE INSPECTION AND SOIL SAMPLING	5			
	3.2	SAMPLE HANDLING PROCEDURES	5			
	3.3	LABORATORY ANALYSIS	5			
	3.4	Adopted Criteria	6			
4.	RES	ULTS	7			
5.	SUN	IMARY & CONCLUSION	9			
6.	STA	TEMENT OF LIMITATIONS	10			
REFE	REN	CES	11			
ABB	REVIA	ATIONS	12			

TABLES

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	2
TABLE 2-2	TOPOGRAPHICAL, GEOLOGICAL, SOIL LANDSCAPE AND	
	HYDROGEOLOGICAL INFORMATION	3
TABLE 2-3:	SUMMARY OF GEOMORPHIC AND SITE FEATURES	4
TABLE 3-1	SUBSURFACE SOIL PROFILE	5
TABLE 4-1:	SUMMARY OF SPOCAS LABORATORY ANALYTICAL RESULTS	8

FIGURES

- FIGURE 1 LOCALITY PLAN
- FIGURE 2SAMPLING LOCATION PLAN

APPENDICES

- APPENDIX A BOREHOLE LOGS
- APPENDIX B CHAIN OF CUSTODY CERTIFICATE AND SAMPLE RECEIPT FORM
- APPENDIX C LABORATORY ANALYTICAL REPORTS

1. INTRODUCTION

1.1 BACKGROUND AND PROPOSED DEVELOPMENT

El Australia (El) was engaged by Mr Ahmad Refaieh, to conduct an Acid Sulfate Soils (ASS) Assessment for the property at 26 Elizabeth Street, Liverpool NSW ('the site').

As shown in **Figure 1**, the site is located in the suburb of Liverpool and comprises Lots 1 in DP 217460 and Lot 10 in DP 621840, covering a total area of approximately 3,144 m². The site is situated within the Local Government Area of Liverpool City Council.

Based on proposed development plans provided by the client, it is understood that the site covers an area of approximately 3,144 m², is currently occupied by commercial / industrial buildings and car parking at grade. Based on preliminary plans, EI understands that the proposed development involves the demolition of the existing site structures and construction of a multi-level apartment building with five podium levels and four levels of basement car parking. No deep soil planting is proposed.

1.2 PROJECT OBJECTIVES

The objective of this assessment is to evaluate the potential presence of acid sulfate soils at the site, and to provide advice for the management of ASS during proposed site excavation, should it be identified. This assessment also satisfies requirements under Part 7, Clause 7.7(2) of Liverpool Local Environmental Plan 2008.

1.3 SCOPE OF WORKS

In order to achieve the above objectives, the scope of works was as follows:

- A detailed site walkover inspection;
- Review of relevant topographic, geological, hydrogeological and soil landscape maps;
- Intrusive site investigation, soil sampling and laboratory analysis;
- A description of the soil attributes of the site; and
- Data interpretation and reporting.

2. DESKTOP REVIEW

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attributo	Description
Auripute	Description
Street Address	26 Elizabeth Street, Liverpool NSW
Location Description	The site is located in the main business are of Liverpool, bounded by Elizabeth Street (north), governmental properties (south), a car parking (east) and a car parking (west).
Site Coordinates	North east corner of the site (GDA94-MGA56):
	Easting: 308328.476
	Northing: 6244709.722
	(Source: http://maps.six.nsw.gov.au).
Site Area	3,144 m ²
	(Ref. mpa. Drawing title. SK01; drawing no. AP01; project. Proposed
	subdivision plan)
Lot and Deposited Plan (DP)	Lots 1 in DP 217460 and Lot 10 in DP 621840
State Survey Marks	The Survey Mark in closest proximity to the site is SS3941D located approximately 56 m from the north east corner of the site, on the corner of Elizabeth Street and Bigge Street.
	(Source: http://maps.six.nsw.gov.au).
Local Government Authority	Liverpool City Council
Parish	St. Luke
County	Cumberland
Current Zoning	B2 – Local centre
	(Liverpool Local Environmental Plan, 2008)

 Table 2-1
 Site Identification, Location and Zoning

2.2 **REGIONAL SETTING**

Local ground topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-2**.

Attribute	Description
Topography	The site slopes gently to the north, from approximate RL 12.85 mAHD at the north-east corner to approximate RL 13.10 mAHD at the south-east corner.
	(Ref. Project surveyors, 2018. Job Ref. D4118, dated 26 March 2018).
Site Drainage	As large areas of the site are concrete driveway, stormwater is expected to drain to the council stormwater system.
Regional Geology	With reference to the 1:100 000 scale Geological Series Sheet 9030 (Penrith) the site is likely to be underlain by Bringelly Shale (Rwb). Bringelly Shale is described as <i>carbonaceous claystone, claystone, laminite, fine to medium-grained lithic sandstone, rare coal and tuff.</i>
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the site overlies a Residual Landscape – Blacktown, which typically includes gently undulating rises on Wianamatta Group shales.
Depth to Groundwater	Groundwater inflow was encountered at 4.8 mBGL in BH1M, 6.1 mBGL in BH8M and 8.3 mBGL in BH2M during the detailed site investigation (EI Australia, 2018, Ref. E23796.E02_Rev0).
Nearest Surface Water Feature	Georges River, located approximately 420 m south east of the site. The river flows in a west to east direction into Botany Bay.
	The Georges River is tidal to Liverpool Weir and is considered to be a marine receptor for assessment purposes.
Anticipated Groundwater Flow Direction	Based on the local topography and the nearest surface water feature, groundwater flow direction is anticipated to be south-easterly towards Georges River located approximately 420 m south-east of the site.

Table 2-2	Topographical,	Geological,	, Soil Landscape	and Hydro	geological	Information
-----------	----------------	-------------	------------------	-----------	------------	-------------

2.3 ACID SULFATE SOIL RISK MAPPING

With reference to the 1:25 000 scale, Liverpool Acid Sulfate Soil (ASS) Risk Map (Murphy, 1997), the subject land lies within the map class description of 'no known occurrence.' As the site is underlain by Bringelly Shale, ASS is not expected to be present.

The Liverpool Local Environmental Plan (2008) Acid Sulfate Soils Map (Sheet ASS_011 shows the site to be within areas mapped as Class 5 Acid Sulfate Soils (ASS). Class 5 areas are likely to locate ASS during works within 500 metres of adjacent Class 1, which are likely to lower the water table below 1 metre AHD on adjacent Class 1 land.

Given that the proposed development is within 500 m from Class 1 land, ASS are likely to be encountered during the works and an ASS Assessment is required.

2.4 GEOMORPHIC AND SITE CHARACTERISTICS

Observations compiled during the site inspection, and via aerial photography interpretation, were compared against various geomorphic and site characteristics outlined in ASSMAC (1998) indicating

likely ASS occurrence. A comparison of site specific and geomorphic features with those indicative of potential ASS presence are presented in Table 2-3.

Table 2-3:	Summary of Geomorphic and Site Feature
------------	--

Geomorphic Features	Presence on Site
Holocene Sediments	Not Present onsite
Soil horizons less than 5 m AHD	Present on site (BH2M)
Marine / estuarine sediments or tidal lakes	Not present onsite
Coastal wetland; backwater swamps; waterlogged or scaled areas; inter-dune swales or coastal sand dunes.	Not present onsite
Dominant vegetation is mangroves, reeds, rushes and other swamp or marine tolerant species	Not present onsite
Geologies containing sulfide-bearing material	Not present onsite
Deep older (Pleistocene) estuarine sediments	Not present onsite

As at least one of the seven geomorphic characteristics listed was positive for this site; hence, there is potential for ASS to be present on the site.

3. FIELD WORK

3.1 SUBSURFACE INSPECTION AND SOIL SAMPLING

A sub-surface inspection and associated soil sampling was conducted at three borehole locations on 20 April 2018. The boreholes were located within the footprint of the base car parking, as presented in **Figure 2.**

Intrusive investigation was performed by a Hanjin Solid Flight Auger. Intrusive investigation extended to a maximum depth of 9.8 m BGL (Refusal on hard rock surface). Soil samples were collected at 0.5 m intervals during drilling advancement, or from each distinctive soil profile.

Soils observed during drilling generally comprised of clayey fill, overlying silty clay (**Table 3-1**). Visual indicators of actual acid sulfate soils (AASS), such as soils containing pale yellow deposits / coatings of jarosite, were not observed. Indicators of potential acid sulfate soils (PASS), including waterlogged and estuarine sands (high moisture content and sulfurous odours) were not observed. Detailed borehole logs pertaining to this ASS investigation are presented in **Appendix A**.

Material	Depth⁺ (mBGL)	General Description
Concrete	0.15	-
Fill	0.15–0.7	Fill – Sandy CLAY; Medium to high plasticity, dark grey, with sub angular to angular gravels, no odour.
Residual Soil	0.7-8.0	Natural – Silty CLAY; Medium to high plasticity, light grey mottled red, dry to moist, no odour.
Bedrock	8.0-9.8+	SHALE; extremely weathered rock, light brown.

Table 3-1Subsurface Soil Profile

Notes:

+ Approximate depth shown as metres below ground level (mBGL). Refer to borehole logs in Appendix A.

3.2 SAMPLE HANDLING PROCEDURES

Grab/dry methods (stainless steel knife and dedicated nitrile gloves) were used to transfer soil samples from the auger into laboratory-supplied, glass jars and plastic zip-lock bags. Each jar and zip-lock bag was filled to minimise the headspace air volume and sealed. Upon sealing, the sample was immediately stored in an insulated chest containing freeze packs, before transportation to the designated NATA-accredited laboratory.

All samples were transported under refrigerated conditions to SGS Australia Pty Ltd (SGS), using strict Chain-of-Custody procedures. A copy of the completed Chain-of-Custody certificate is presented in **Appendix B**.

3.3 LABORATORY ANALYSIS

Representative samples from each soil horizon were assigned for laboratory analysis, in accordance with the methodologies prescribed in Section 4.2 of ASSMAC (1998) to confirm the presence or absence of ASSs.

All laboratory analyses were conducted on discrete samples using NATA-registered methods. Laboratory results are summarised in **Tables 4-1** and **4-2**, with laboratory analytical certificates provided in **Appendix C**.

3.4 ADOPTED CRITERIA

The analytical results were interpreted with respect to the criteria presented in Table 4.4 of ASSMAC (1998), for fine textured soil (clay) where less than 1,000 tonnes of soils are to be disturbed.

4. **RESULTS**

Laboratory analytical results for the discrete soil samples are summarised in **Tables 4-1**. These tables also include the relevant soil criteria.

SPOCAS Analysis

Suspended peroxide oxidation combined acidity and sulfate testing (SPOCAS) was conducted on fourteen samples (BH1M 0.6-0.7, BH1M 1.1-1.2, BH1M 2.1-2.2, BH1M 3.0-3.1, BH1M 3.5-3.6, BH1M 4.4-4.5, BH2M 0.9-1.0, BH2M 1.4-1.5, BH2M 2.4-2.5, BH2M 3.5-3.6, BH2M 4.0-4.1, BH2M 4.5-4.6, BH8M 1.9-2.0, and BH8M 2.4-2.5). Sample peroxide oxidisable sulphur (S_{POS}) results, and acid trail titratable sulfidic acidity (TSA) and titratable peroxide acidity (TPA) results, were below respective action criteria, with the exception of concentrations of titratable peroxide acidity (TPA) (62 moles H+/tonne) exceeded ASSMAC (Fine Textured Soil) Action Criteria at sample BH8M 2.4-2.5 (67 moles H+/tonne).

Sample ID	Sampling Depth (m BGL)	Sampling Date	Soil Type	рН КСІ	Peroxide pH (pH Ox)	TAA (moles H+/tonne)	TPA (moles H+/tonne)	TSA (moles H+/tonne)	Sulfur (SKCI) %w/w	Sulfur (Sp) %w/w	Peroxide Oxidisable Sulphur (S _{Pos}) %w/w	Comment
BH1M 0.6-0.7	0.6-0.7	20/04/18	Clay	6.6	7.5	<5	<5	<5	<0.005	0.007	0.006	ASS/PASS unlikely to be present
BH1M 1.1-1.2	1.1-1.2	20/04/18	Clay	5.7	6.0	12	10	<5	<0.005	0.021	0.018	ASS/PASS unlikely to be present
BH1M 2.1-2.2	2.1-2.2	20/04/18	Clay	4.9	5.5	17	40	22	0.012	0.036	0.024	ASS/PASS unlikely to be present
BH1M 3.0-3.1	3.0-3.1	20/04/18	Clay	6.0	6.5	6	<5	<5	0.009	0.014	<0.005	ASS/PASS unlikely to be present
BH1M 3.5-3.6	3.5-3.6	20/04/18	Clay	6.0	6.9	<5	<5	<5	0.010	0.013	<0.005	ASS/PASS unlikely to be present
BH1M 4.4-4.5	4.4-4.5	20/04/18	Clay	6.6	8.7	<5	<5	<5	0.005	0.005	<0.005	ASS/PASS unlikely to be present
BH2M 0.9-1.0	0.9-1.0	20/04/18	Clay	6.6	7.1	<5	<5	<5	0.006	0.021	0.015	ASS/PASS unlikely to be present
BH2M 1.4-1.5	1.4-1.5	20/04/18	Clay	6.7	6.9	<5	<5	<5	<0.005	<0.005	<0.005	ASS/PASS unlikely to be present
BH2M 2.4-2.5	2.4-2.5	20/04/18	Clay	7.0	7.0	<5	<5	<5	<0.005	0.010	0.006	ASS/PASS unlikely to be present
BH2M 3.5-3.6	3.5-3.6	20/04/18	Clay	6.6	6.7	<5	<5	<5	<0.005	0.007	<0.005	ASS/PASS unlikely to be present
BH2M 4.0-4.1	4.0-4.1	20/04/18	Clay	6.5	6.6	<5	<5	<5	<0.005	0.005	<0.005	ASS/PASS unlikely to be present
BH2M 4.5-4.6	4.5-4.6	20/04/18	Clay	6.7	6.7	<5	<5	<5	0.006	0.010	<0.005	ASS/PASS unlikely to be present
BH8M 1.9-2.0	1.9-2.0	20/04/18	Clay	4.5	5.0	47	60	12	0.037	0.047	0.010	ASS/PASS unlikely to be present
BH8M 2.4-2.5	2.4-2.5	20/04/18	Clay	4.5	5.0	50	67	17	0.048	0.065	0.017	Possible PASS presence
ASSMAC	(Fine Textured	Soil) Action Cri	iteria	<4.0 ¹	<3.5 ²	NR	62 ²	62 ²	NR	NR	0.1 ²	
Notes:												

Table 4-1: Summary of sPOCAS laboratory analytical results

Indicates reported result is over the action

criterion

ASSMAC (1998) criteria are the *Action Criteria* where between 1 and 1,000 tonnes of fine textured clay soils are to be disturbed 1 Indicator of ASS 2 Indicator of PASS

5. SUMMARY & CONCLUSION

Project Objective

This report has been prepared to evaluate the potential risk of exposure of ASS or PASS during excavations for the proposed multi-level apartment building with a maximum excavation depth of 12 mBGL.

Desktop Study

- The sub-surface layers comprised anthropogenic filling overlying natural clays;
- The nearest surface water feature is Georges River, located approximately 420 m south east of the site;
- The Liverpool Local Environmental Plan (2008) Acid Sulfate Soils Map (Sheet ASS_011 shows the site to be within areas mapped as Class 5 Acid Sulfate Soils (ASS); and
- Geomorphic site features identified from the site walkover included Holocene sediments, soil horizons less than 5 m AHD, marine / estuarine sediments or tidal lakes and coastal wetland; backwater swamps; waterlogged or scaled areas; inter-dune swales or coastal sand dunes. These features indicated a potential for ASS/PASS to be present.

Field Study

- Fill soils were identified from 0.15 mBGL to 0.7 mBGL. These fill soils were characterised by dark grey medium to high plasticity clay with no odour. Natural soils underlying the fill was characterised by light grey mottled red medium to high plasticity clay, no marine or estuarine sediments were observed; and
- The majority of samples did not exceed the action criteria. We note that one soil sample (BH8M 2.4-2.5) exceeded the action criteria for TPA, however, laboratory analytical results indicate that this exceedance is driven by existing soil acidity (TAA). In addition, minor sulfur was reported in soil samples analysed, with S_{POS} laboratory result also reported at low concentrations or below the limit of laboratory reporting.

Conclusions

The maps and documents examined during this assessment established that the site was situated within an area of no known occurrences of Acid Sulfate Soils. The site has been previous mapped as being underlain by residual Bringelly Shale, and this was confirmed during intrusive investigation, with residual sily clay and weathered shale, with no visual indicators of actual and potential ASS observed.

Based on observations obtained during intrusive investigations, the site did not demonstrate indicators for the presence of ASS/PASS.

In view of the above, EI consider the potential for ASS or PASS is unlikely to be present onsite. As such, management planning is not required.

6. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to EI's investigations and assessment.

El's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

- ASSMAC (1998) Acid Sulfate Soils Assessment Guidelines, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- DMR (2016) Sydney 1:100,000 Coastal Quaternary Geological Sheet 2179 (Edition 2). Geological Survey of New South Wales, Department of Mineral Resources.
- EPA (2014) Waste Classification Guidelines, NSW Environmental Protection Authority, New South Wales, EPA 2014/0796, November 2014.
- Flewin (1997) Acid Sulfate Soil Risk of the Botany Bay Sheet. Department of Land and Water Conservation, Sydney, Second Edition.
- Hazelton, P.A and Tille, P.J. (1990), *Soil Landscapes of the Sydney Warriewood 1:100 000 Sheet.* Soil Conservation Service of NSW, Sydney.
- (2011) Rockdale Local Environmental Plan, New South Wales Government
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) Guidelines for the Use of Acid Sulfate Soil Risk Maps. Department of Land and Water Conservation, Sydney, Second Edition.

ABBREVIATIONS

AASS	Actual acid sulfate soils
AHD	Australian Height Datum
ASS	Acid sulfate soils
ASRIS	Australian Soil Resource Information System
ASSMAC	Acid Sulfate Soil Management Advisory Committee (ASSMAC)
BGL	Below Ground Level
BH	Borehole
COC	Chain of Custody
DA	Development Application
DP	Deposited Plan
EI	El Australia
EPA	Environmental Protection Authority
km	Kilometres
m	Metres
mAHD	Metres relative to Australian Height Datum
mBGL	Metres below ground level
NATA	National Association of Testing Authorities, Australia
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PASS	Potential acid sulfate soils
рН	Measure of the acidity or basicity of an aqueous solution
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance / Quality Control
SRA	Sample receipt advice (document confirming laboratory receipt of samples)

FIGURES

Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

	-
pproved:	C.S.
)ate:	23-05-18
cale:	Not To Scale

2

Site Locality Plan

Project: E23796.E14_Rev0

LEGEND

- Approximate site boundary _ _ _ _
- \bigcirc Approximate monitoring well location
- – Approximate basement boundary

Drawn:	S.L.	
Approved:	C.S.	2
Date:	23-05-18	

Binah Development Pty Ltd Acid Sulfate Soil Assessment 26 Elizabeth Street, Liverpool NSW Sampling Location Plan

Figure:

2

Project: E23796.E14_Rev0

Acid Sulfate Soils Assessment 26 Elizabeth Street, Liverpool NSW Report No. E23796.E14_Rev0

APPENDIX A

Borehole Logs

	Cor	eia		Str	alia	Project Location Position Job No. Client	Acid 26 El Refe E237 Binal	Sulfat lizabet r to Fig '96 n Deve	e Soi h Stre gure 2 elopm	il Assessment eet, Liverpool NSW 2 Contractor Geosense ient Pty Ltd Drill Rig Drill Rig Inclination -90°		BC	DRE	HOLE: Sheet Date Started Date Completed Logged SL Checked CS	BH1M 1 OF 1 20/4/18 1 20/4/18 Date: 23/5/18 Date: 23/5/18
	-		Dril	ling		Sampling	-		r .	Field Material Desc	riptio	on Is			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	I <u>D Sta</u> BH1M		ETAILS
1.03 GLB L0g IS AU BORE HOLE 3 E23796 LOGS SL.GPJ < <drawngfile> 07/05/2018 1441 10.0.000 DatgeLda and In Stu Tod - DGD Lib: EA 1.03 2014-07-05 Pi; EIA 1.03 2014-07-05</drawngfile>	ADIT				<u>0.10</u> 0.30	BH1M_0.2-0.3 PID = 3.8 ppm BH1M_0.6-0.7 PID = 3 ppm BH1M_1.1-1.2 PID = 4.2 ppm BH1M_2.1-2.2 PID = 4.5 ppm BH1M_2.5-2.6 BH1M_3.0-3.1 PID = 3 ppm BH1M_3.5-3.6 PID = 3.4 ppm BH1M_4.4-4.5 PID = 1.6 ppm BH1M_4.9-5.0 PID = 1.4 ppm BH1M_5.4-5.5 PID = 1.5 ppm				CONCRETE FILL: SANDY CLAY; medium to high plasticity, with subangular to angular gravels, no odour. SILTY CLAY; medium to high plasticity, grey mottled red, no odour. SHALE; extremely weathered, light brown. Hole Terminated at 5.70 m Refusal on Rock. Borehole Converted into Monitoring Well.		d not			Gatic Cover
EIA UB															

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRILLING/EXC	AVATIO	N METHOD					
НА На	and Auger		RD	Rotary blade	or drag bit	NQ	Diamond Core - 47 mm
DTC Dia	atube Cor	ing	RT	Rotary Tricon	e bit	NMLC	Diamond Core - 52 mm
NDD No	on-destruc	tive digging	RAB	Rotary Air Bla	ist	HQ	Diamond Core - 63 mm
AS* Au	iger Screv	ving	RC	Reverse Circu	ulation	HMLC	Diamond Core - 63mm
AD* Au	ıger Drillin	Ig	PT	Push Tube		BH	I ractor Mounted Backhoe
*V V-I	Bit		CT	Cable Tool Ri	g	EX	I racked Hydraulic Excavator
*T TC	C-Bit, e.g.	ADT	JET	Jetting	Deller		Existing Excavation
				washbore or	Baller	HAND	
	· ·						
L Low res	sistance	. Rapid penetration/	excavatio	on possible with	little effort fron	n equipment	used.
M Medium	n resista	nce. Penetration/ e	excavatior	n possible at an	acceptable rat	e with moder	ate effort from equipment used.
H High res	sistance	Penetration/ excav	vation is p	ossible but at a	slow rate and	requires sign	ificant effort from equipment used.
R Refusal	/ Practic	al Refusal. No fur	ther prog	ress possible wi	ithout risk of da	amage or una	acceptable wear to equipment used.
These assessment	ts are sub	jective and are depe	endent on	many factors, i	ncluding equip	ment power a	and weight, condition of
excavation or drillin	ng tools ai	nd experience of the	e operator				
WATER							
	$\mathbf{\Sigma}$	Water level at date	e shown		\triangleleft	Partial wat	er loss
	\triangleright	Water inflow				Complete	water loss
GROUNDWATE	R D	Observation of gro or cave-in of the b	oundwate orehole/ t	r, whether prese est pit.	ent or not, was	s not possibl	e due to drilling water, surface seepage
GROUNDWATE	R ERED	Borehole/ test pit strata. Inflow may	was dry s have bee	oon after excav n observed had	ation. Howeve	r, groundwat / test pit beer	er could be present in less permeable n left open for a longer period.
SAMPLING AND		NG					
SPT 4,7,11 N=18 seating 30/80mm RW HW HB		Standard Penetra 4,7,11 = Blows pe Where practical r Penetration occur Penetration occur Hammer double b	ation Test er 150mm efusal occ rred under rred under pouncing o	to AS1289.6.3. ² N = Blo curs, the blows a r the rod weight the hammer ar on anvil	1-2004 ws per 300mm and penetration conly nd rod weight c	penetration n for that inte	following 150mm rval are reported
Sampling							
DS		Disturbed Sample	e .				
BDS		Bulk disturbed Sa	imple				
GS WS		Gas Sample Water Sample					
U63		Thin walled tube	sample - r	number indicate	s nominal sam	nole diameter	in millimetres
Testing			oumpio i				
FP		Field Permeability	/ test over	section noted			
FVS		Field Vane Shear	test expr	essed as uncor	rected shear st	rength (sv =	peak value, sr = residual value)
PID		Photoionisation D	etector re	ading in ppm			
PM		Pressuremeter te	st over se	ction noted			
PP		Pocket Penetrom	eter test e	expressed as in	strument readi	ng in kPa	
WPT		Water Pressure te	ests				
		Static Cone Pe	enetromet	er test			
CPTu		Static Cone Pene	tration tes	st with pore pres	ssure (u) meas	urement	
RANKING OF V	ISUALL	Y OBSERVABLE	CONTA	MINATION A	ND ODOUR	(for specific	soil contamination assessment
R = 0	No visib	le evidence of conta	amination		R = A	No non-nat	ural odours identified
R = 1	Slight ev	vidence of visible co	ontaminati	on	R = B	Slight non-i	natural odours identified
R = 2	Visible of	contamination			R = C	Moderate n	on-natural odours identified
R = 3	Significa	ant visible contamina	ation		R = D	Strong non-	-natural odours identified
ROCK CORE RE	ECOVER	RY					
TCR = Total Co	ore Recov	ery (%)	SCR	= Solid Core Re	ecovery (%)	F	RQD = Rock Quality Designation (%)
= Length of core re	ecevered y	x 100 =	Σ Length	ofcylindrical co	re recevered X	100 =	Σ Axial Lenghts of core>100mm x 100
Lengh of cor	e run			Lengh of core r	un		Lengn of core run
MATERIAL BOU	JNDARIE	ES			· · ·		
= interre	ea pounda	ary -		 = probable b 	boundary		(-, (-, (-, (-, (-, (-, (-, (-, (-, (-,

eiaust Contamination Remediation	ralia			USED O	METH ON BORE	OD OF HOLE	SOIL DESCR AND TEST PI	RIPTION T LOGS
	FILL		<u> 後 後 後</u> <u> 秋 秋 秋</u> <u> 秋 秋</u> 秋 <u> 秋 秋</u> 0	RGANIC SC DL, OH or Pt))	 	CLAY (CL, C	CI or CH)
	COUI BOUI	BLES or _DERS	**** *** *** * SI	ILT (ML or M	IH)		SAND (SP c	or SW)
	GRAV GW)	/EL (GP or	Combinations sandy clay	s of these basic s	symbols may b	be used to	indicate mixed mater	ials such as
CLASSIFIC Soil is broad 1994 and An	CATION A ly classifien ndt2 – 199	AND INFERRED d and described ir 4), Appendix A. M	STRATIGRAPH Borehole and Test aterial properties are	Y Pit Logs using th e assessed in the	e preferred m e field by visua	ethod give al/tactile me	n in AS1726 – 1993, ethods.	(Amdt1 –
PARTICLE	SIZE CH	ARACTERIST	cs	USCS SY	MBOLS			
Major Divi	ision	Sub Division	Particle Size	Major D	Divisions	Symbol	Descrip	otion
	BOULDE	BOULDERS >200 mm Set GW Well graded gravel and sand mixtures, little or n COBBLES 63 to 200 mm Set GP Poorly graded gravel and sand mixtures, little or n					el and gravel- tle or no fines.	
	COBBL	ES	63 to 200 mm	LS 15n	50% ins a	GP	Poorly graded gra	vel and gravel-
		Coarse	20 to 63 mm	0.0 ר	gra 2.mi		Silty gravel, gra	tle or no fines. vel-sand-silt
GRAVE	EL	Medium	6 to 20 mm	than than	arse t	GM	mixtur	es.
		Fine	2 to 6 mm	by c	Mo	GC	Clayey gravel, gra mixtur	avel-sand-clay es.
SANG		Coarse	0.6 to 2 mm	SE GF 50% וי	50% ains m	SW	Well graded sand sand, little or	d and gravelly no fines.
0, 112	·	Fine	0.075 to 0.2mm	AR:	an (se gi	SP	Poorly graded sar sand little or	nd and gravelly
			0.002 to 0.075 m		re th oars	SM	Silty sand, sand	-silt mixtures.
		/	<0.002 to 0.070 mm	th th	of o	SC	Clayey sand, mixtur	sandy-clay es.
	PLAS		RTIES	in than than the second se	ess	ML	Inorganic silts of very fine sands, i	low plasticity, rock flour, silty
L. percent	40	c	H	ED SOII by dry r n is less	aid Limit < 50%	CL	Inorganic clays of plasticity, gravell	low to medium y clays, sandy y clays
ex {Io	20	CL CI .M		5RAIN n 50% 63mr 0.075	Liqu	OL	Organic silts and clays of low	d organic silty plasticity.
QNI			он	than than		MH	Inorganic silts of	high plasticity.
STICITY	10	OL or ML	MH	FII More less	Limit than 50%	ОН	Organic clays of r	nedium to high
PLAS	20	30 40 50	60 70			DT	Peat muck and	other highly
		LIQUID LIMIT (WL),	percent			PI	organic	soils.
MOISTUR								
Symbol	Term Drv	Description Sands and grave	als are free flowing	Clave & Silts ma	v he brittle or	friable and	nowdery	
M	Moist	Soils are darker	than in the dry condi	ition & may feel o	cool. Sands a	nd gravels	tend to cohere.	
W	Wet	Soils exude free	water. Sands and gi	ravels tend to col	here.	0		
Moisture co	ontent of co nan. < less	ohesive soils may than. « much less	also be described in than1.	n relation to plasti	ic limit (WP) o	r liquid limi	t (WL) [» much great	er than,
CONSISTEN		,		DENSITY				
Symbol	Term	Undrained	Shear Strength	Symbol	Term		Density Index %	SPT "N" #
VS	Very So	ft 0. to	12 kPa	VL	Very Loo	se	< 15	0 to 4
5 F	Firm	12 to	50 kPa	MD	Medium De	nsity	<u>35</u> to 65	10 to 30
St	Stiff	50 to	100 kPa	D	Dense		65 to 85	30 to 50
<u>v5</u> t Н	very Sti Hard	Above	e 200 kPa		very Den	se	ADOVE 85	ADOVE 50
In the absen # SPT correl	ce of test r ations are	esults, consistenc not stated in AS1	y and density may b 726 – 1993, and may	be assessed from y be subject to co	correlations v	with the obsorverburder	served behaviour of t	he material. ment type.
MINOR CO	MPONE	NTS	-					
Term	Assessm	nent Guide				Pre	oportion by Mass	
Trace	Presence or no diff	e just detectable b erent to general p	y feel or eye but soil roperties of primary	l properties little component		Coars Fine	e grained soils: ≤ 5% grained soil: ≤15%	•
Some	Presence or no diff	e easily detectable erent to general p	by feel or eye but s roperties of primary	oil properties little component	e	Coarse Fine ç	grained soils: 5 - 12 grained soil: 15 - 30%	%

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Symbol	Term	Point Load Index, Is ₍₅₀₎	Field Guide
		(MPa) #	
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

[#]Rock Strength Test Results

◀

Point Load Strength Index, $Is_{\rm (50)},$ Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $Is_{(50)}$, but can be as low as 5 MPa.

ROCK	MATEF	RIAL WEATHERING	
Sym	bol	Term	Field Guide
RS	5	Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.
EW	I	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.
ROCK MATERIAL WEATHERING Symbol Term Field Guide RS Residual Soil Soil developed on extremely weathered rock; the mass structure and fabric are no longer evident; there is a large change in volume but the not been significantly transported. EW Extremely Weathered Rock is weathered to such an extent that it has soil properties - i.e. it disintegrates or can be remoulded, in water. DW HW Distinctly Weathered Rock strength usually changed by weathering. The rock may be high discoloured, usually by iron staining. Porosity may be increased by le may be decreased due to deposition of weathering products in pores environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for SW Slightly Weathered Rock slightly discoloured but shows little or no change of strength refresh rock. FR Fresh Rock shows no sign of decomposition or staining.	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or		
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.
	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.		
FR	K MATERIAL WEATHERING rmbol Term Field Guide RS Residual Soil Soil developed on extremely weathered rock; the mass structure and a fabric are no longer evident; there is a large change in volume but the not been significantly transported. W Extremely Weathered Rock is weathered to such an extent that it has soil properties - i.e. it edisintegrates or can be remoulded, in water. HW Image: HW Ack strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by lead may be decreased due to deposition of weathering products in porestent is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for Image: Stightly Weathered W Slightly Weathered Rock slightly discoloured but shows little or no change of strength relations fresh rock.	Rock shows no sign of decomposition or staining.	

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

ROCK MATE	RIAL D	ESCRIP	TION								
Layering					Stru	cture					
Term		Descr	iption		Term	ו				Spacing (mm)	
Massivo		No lov	oring apparent		Thinl	y lam	inated			<6	
Massive		NO lay	ening apparent		Lami	natec	ł			6 – 20	
Roorly Dovol	onod	Layerir	ng just visible; lit	tle effect on	Very	thinly	/ bedded			20 – 60	
Foony Devel	opeu	proper	ties		Thinl	y bec	lded			60 – 200	
		Layerir	ng (bedding, folia	ation, cleavage)	Medi	um b	edded			200 – 600	
Well Develop	ed	distinc	t; rock breaks me	ore easily	Thick	dy be	dded			600 - 2,000	
		paralle	l to layering		Very	thick	ly bedded			> 2,000	
ABBREVIAT	ONS A	ND DES	CRIPTIONS FO	R DEFECT TYP	ES						
Defect Type		Abbr.	Description								
Joint		JT	Surface of a fra or no tensile str acts as cement	cture or parting, ength. May be cl	formed losed o	witho r filleo	out displacen d by air, wate	nent, acı r or soil	ross which t or rock sub	he rock has little stance, which	
Bedding Par	ting	BP	Surface of fract sub-parallel to I indicating orient	ure or parting, ac ayering/ bedding tation during dep	cross w J. Beddi oosition,	hich f ng re resu	the rock has fers to the lag Iting in plana	little or r yering o r anisoti	tensile st r stratificatio ropy in the r	rength, parallel or on of a rock, ock material.	
Foliation		FL	Repetitive plana higher pressure	ar structure paral , especially in m	llel to th etamor	ie she phic r	ear direction ock, e.g. Sch	or perpe histosity	endicular to (SH) and G	the direction of ineissosity.	
Contact		CO	The surface bet	tween two types	or ages	s of ro	ock.				
Cleavage		CL	Cleavage plane mechanical frac	es appear as para cturing of rock the	allel, clo rough d	osely eform	sely spaced and planar surfaces resulting from formation or metamorphism, independent of bedding.				
Sheared Sea Zone (Fault)	am/	SS/SZ	Seam or zone v spaced (often <	vith roughly para 50 mm) parallel	llel alm and us	ost pl ually :	shear direction or perpendicular to the direction of c rock, e.g. Schistosity (SH) and Gneissosity. rock. Ily spaced and planar surfaces resulting from irmation or metamorphism, independent of bedding. planar boundaries of rock substance cut by closely y smooth or slickensided joints or cleavage planes. sually angular fragments of the host rock substance, es. The brecciated fragments may be of clay, silt, onal boundaries, formed by weathering of the rock ayey, with very distinct roughly parallel boundaries, cavity.				
Crushed Sea Zone (Fault)	am/	CS/CZ	Seam or zone of with roughly parts and or gravels	composed of disc rallel near-planai sizes or mixtures	oriented bound of thes	l usua aries se.	mation or metamorphism, independent of bedding. planar boundaries of rock substance cut by closely smooth or slickensided joints or cleavage planes. Jally angular fragments of the host rock substance, s. The brecciated fragments may be of clay, silt,				
Decomposed Seam/ Zone	d	DS/DZ	Seam of soil su material in place	bstance, often w es.	ith grac	lation	al boundarie	s, forme	d by weath	ering of the rock	
Infilled Seam	I	IS	Seam of soil su formed by soil r	bstance, usually nigrating into joir	clay or nt or op	claye en ca	ey, with very wity.	distinct	roughly para	allel boundaries,	
Schistocity		SH	The foliation in of platy or prism	schist or other co natic mineral grai	oarse g ins, suc	raine h as	d crystalline ı mica.	ock due	e to the para	allel arrangement	
Vein		VN	Distinct sheet-li or crack-seal gr	ke body of miner owth.	als crys	stallis	ed within roc	k throug	h typically o	open-space filling	
ABBREVIATI	ONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE AN	D RO	UGHNESS				
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Des	cription				
Planar	PI	Consis	stent orientation	Polished	Pol	Shir	ny smooth su	rface			
Curved	Cu	Gradua orienta	al change in ation	Slickensided	SL	Gro	Shiny smooth surface Grooved or striated surface, usually polished				
Undulating	Un	Wavy	surface	Smooth	S	Smo	ooth to touch	. Few or	no surface	irregularities	
Stepped	St	One or defined	r more well d steps	Rough	RF	Mar <1m	ny small surfa nm). Feels lik	ace irreg e fine to	ularities (an coarse sar	nplitude generally ndpaper	
Irregular	lr	Many s in orier	sharp changes ntation	Very Rough	VR	Mar >1m	ny large surfa nm. Feels like	ce irreg e very co	ularities, an barse sandp	nplitude generally paper	
Orientation:		Vertic Inclin	cal Boreholes – led Boreholes –	The dip (inclination The inclination is	on from s measu	horiz ired a	ontal) of the o as the acute a	defect. Ingle to f	the core axis	S.	
ABBREVIATI	ONS A		CRIPTIONS FO	R DEFECT COA	TING		DEFECT A	PERTUR	RE		
Coating	Abbr.	Descrip	otion				Aperture	Abbr.	Descriptio	on	
Clean	CN	No visibl	e coating or infill	ing			Closed	CL	Closed.		
Stain	SN	No visibl staining,	e coating but su often limonite (c	rfaces are discol prange-brown)	oured b	y	Open	0	Without any	y infill material.	
Veneer	VNR	A visible	coating of soil o	r mineral substa	nce, us	ually	Infilled	-	Soil or rock	ti.e. clay, talc,	

Acid Sulfate Soils Assessment 26 Elizabeth Street, Liverpool NSW Report No. E23796.E14_Rev0

APPENDIX B

Chain of Custody Certificate and Sample Receipt Form

Ref: Interlab_COC_EI_SPOCAS_SL.doc/ver.1/06.07.2006/Page 1 of 2

Uncontrolled template when printed

Suite 6.01, 55 Miller Street Pyrmont NSW 2009

SGS Job No: SE178319 SE178319.013 SE178319.011 SE178319.010 SE178319.007 SE178319.006 SE178319.005 SE178319.004 SE178319.003 Address To: Send To: Final Report Required: Relinquished By: Emily Yin SE178319.012 SE178319.002 Sample No NOTES:* Client Address: Attention: SHARON_LI G BH2M 2.4-2.5 BH2M 1.4-1.5 BH1M 4.4-4.5 BH1M 2.1-2.2 BH2M 3.5-3.6 BH2M 0.9-1.0 BH1M 3.5-3.6 BH1M 3.0-3.1 BH1M 1.1-1.2 BH1M 0.6-0.7 Sample No. Elizabeth St, Liverpool NSW Client Job No: E23796 - 26 Yes / No / NATA (Address As Below) Us / Client* Us / Client CHAIN OF CUSTODY & ANALYSIS REQUEST Environmental Investigations (FOR INTERLAB WORK) Date/Time: 24/04/2018 Final Report Due: Prelim Report Due: Water × × × × × × Soil × × × × Matrix 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 Date Sampled Ice 01/05/2018 01/05/2018 Preservation Acid Method Other None Quote No: Special Prices Apply: × × × × × SPOCAS × × × × × Received By *** Special Prices, Quotes, Clients MUST BE Referred To. Received: 26 – Apr – 2018 SGS Cairns Environmental CE133191 COC SLIM CLIENT CODE: EI AUSTRALIA 12269923_11762409 Analysis Required Send Results to:-Initiating Laboratory: Initiating Contact: Received: 23 – Apr – 2018 SGS Alexandria Environmenta SE178319 SUBCON Date/Time SGS Sydney - Alexandria Emily Yin (<u>au.samplereceipt.sydney@sgs.com</u>) AU.Environmental.Sydney@sgs.com Client:**Environmental Investigation Yes / No COURIER SERVICE: CONSIGNMENT No: Client Contacts for AUENVSE INVOICE = Invoice SGS_SYD_REPORTS_PM = Remarks REPORTS SGS_SYD_SRA_PM = Sample Receipt Advice STARTRACK SPOCAS 501

Receiving Laboratory:

SGS Cairns

Ref: Interlab_COC_EI_SPOCAS_SL.doc/ver.1/06.07.2006/Page 2 of 2

Uncontrolled template when printed

Suite 6.01, 55 Miller Street Pyrmont NSW 2009

Environmental Investigations

opecial Phices, Quotes, Chefits MUST DE Referred To.

SLIM CLIENT CODE: EI AUSTRALIA 12269923_11762409

NOTES: CIETIL AUDIESS. ALLETIL

												min	~ - ~	> maton	:	200		
SGS	CHAIN OF CU:	STO OR IN	UTE DY	& ANAL RLAB WO	YSI RK)	S R	EQ	JES			S Init	tiating liating	g Lab Conta	orato	N,	SGS S	ydney	 / - Alexandria ampleteceipt.sydney@sqs.com)
Final Report Required:	Yes / No / NATA	Prelir	n Re	port Due:		01/05	5/2018		ds	ecial	rices	; Appl	Y:			_	'es / I	No
Cond To:	In / Client	Eins		ort Due:		01/05	21/2018		2	oto N	2						liont:	**Environmental
								,	{S		9					= (nvesti	igation
Address To:	Us / Client*		M	atrix		Pres	ervati	on			Ana	lysis F	Requi	red		_		Remarks
	(Address As Below)			_		M	ethod											
SGS Job No: SE178319	Client Job No: E23796 - 26 Elizabeth St, Liverpool NSW	er		pled			r	9	CAS									Client Contacts for AUENVSE: INVOICE = Invoice SGS_SYD_REPORTS_PM =
Sample No.	Sample No.	Wate	Soil	Date Sam	Ice	Acid	Othe	None	SPO									REPORTS SGS_SYD_SRA_PM = Sample Receipt Advice
SE178319.014	BH2M 4.0-4.1		×	20/04/18					×									SPOCAS
SE178319.015	BH2M 4.5-4.6		×	20/04/18					×									
SE178319.023	BH8M 1.9-2.0		×	20/04/18					×									
SE178319.024	BH8M 2.4-2.5		×	20/04/18					×									
																		COURIER SERVICE:
																		STARTRACK
																		CONSIGNMENT No:
Relinquished By: Emily Y	Î	Date/	Time	: 24/04/2018						Rec	eived	By:)ate/T	ime	
NOTES:* Olioni		-								***		-]			2			

ε

SAMPLE RECEIPT ADVICE

CLIENT DETAILS	3	LABORATORY DETA	NILS	
Contact	Sharon Li	Manager	Jon Dicker	
Client	SGS EHS SYDNEY	Laboratory	SGS Cairns Environmental	
Address	5258 201 EHS SYDNEY UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015	Address	Unit 2, 58 Comport St Portsmith QLD 4870	
Telephone	61 2 95160722	Telephone	+61 07 4035 5111	
Facsimile	02 8594 0499	Facsimile	+61 07 4035 5122	
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com	
Project	E23796-26 Elizabeth St Liverpool NSW	Samples Received	Thu 26/4/2018	
Order Number	SE178319	Report Due	Tue 1/5/2018	
Samples	14	SGS Reference	CE133191	

_ SUBMISSION DETAILS

This is to confirm that 14 samples were received on Thursday 26/4/2018. Results are expected to be ready by COB Tuesday 1/5/2018. Please quote SGS reference CE133191 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	14 X SOIL
Date documentation received	26/4/2018	Type of documentation received	COC
Number of eskies/boxes received	1	Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	Chilled
Sufficient sample for analysis	Yes	Turnaround time requested	3 DAY TAT

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

3 day tat

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client SGS EHS SYDNEY

- SUMMARY OF ANALYSIS -

Project E23796-26 Elizabeth St Liverpool NSW

No.	Sample ID	Moisture Content	SPOCAS Net Acidity Calculations	TAA (Titratable Actual Acidity)	TPA (Titratable Peroxide Acidity)
001	BH1M 0.6-0.7	1	6	7	21
002	BH1M 1.1-1.2	1	6	7	21
003	BH1M 2.1-2.2	1	6	7	21
004	BH1M 3.0-3.1	1	6	7	21
005	BH1M 3.5-3.6	1	6	7	21
006	BH1M 4.4-4.5	1	6	7	21
007	BH2M 0.9-1.0	1	6	7	21
008	BH2M 1.4-1.5	1	6	7	21
009	BH2M 2.4-2.5	1	6	7	21
010	BH2M 3.5-3.6	1	6	7	21
011	BH2M 4.0-4.1	1	6	7	21
012	BH2M 4.5-4.6	1	6	7	21
013	BH8M 1.9-2.0	1	6	7	21
014	BH8M 2.4-2.5	1	6	7	21

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . Acid Sulfate Soils Assessment 26 Elizabeth Street, Liverpool NSW Report No. E23796.E14_Rev0

APPENDIX C

Laboratory Analytical Reports

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	Sharon Li	Manager	Jon Dicker
Client	EI AUSTRALIA	Laboratory	SGS Cairns Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	61 2 95160722	Telephone	+61 07 4035 5111
Facsimile	02 8594 0499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project Order Number Samples	E23796-26 Elizabeth St Liverpool NSW SE178319 14	SGS Reference Date Received Date Reported	CE133191 R0 26 Apr 2018 01 May 2018

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146).

SIGNATORIES _____

Anthony Nilsson Operations Manager

Jon Dicker Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

t Portsmith QLD 4870 A

Australia t +61 7 4035 5111 f +61 7 4035 5122

CE133191 R0

Parameter	Sam Sa Si Linits	nple Number Imple Matrix Sample Date ample Name	CE133191.001 Soil 20 Apr 2018 BH1M 0.6-0.7	CE133191.002 Soil 20 Apr 2018 BH1M 1.1-1.2	CE133191.003 Soil 20 Apr 2018 BH1M 2.1-2.2	CE133191.004 Soil 20 Apr 2018 BH1M 3.0-3.1
Faranieler	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	17	20	20	13

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

рН КСІ	pH Units	-	6.6	5.7	4.9	6.0
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	0.61	0.86	0.31
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	12	17	6
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	0.02	0.03	0.01
Sulphur (SKCI)	%w/w	0.005	<0.005	<0.005	0.012	0.009
Calcium (CaKCl)	%w/w	0.005	0.14	0.11	0.018	0.013
Magnesium (MgKCI)	%w/w	0.005	0.020	0.088	0.059	0.082

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	7.5	6.0	5.5	6.5
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	<0.25	0.49	2.0	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	10	40	<5
TPA as S % W/W	%w/w S	0.01	<0.01	0.02	0.06	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	22	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	1.1	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	0.04	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.40	<0.01	<0.01	0.25
ANCE as moles H+/tonne	moles H+/T	5	80	<5	<5	50
ANCE as S % W/W	%w/w S	0.01	0.13	<0.01	<0.01	0.08
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.006	0.018	0.024	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	11	15	<5
Sulphur (Sp)	%w/w	0.005	0.007	0.021	0.036	0.014
Calcium (Cap)	%w/w	0.005	0.17	0.12	0.038	0.015
Reacted Calcium (CaA)	%w/w	0.005	0.031	0.007	0.020	<0.005
Reacted Calcium (CaA)	moles H+/T	5	16	<5	10	<5
Magnesium (Mgp)	%w/w	0.005	0.023	0.090	0.12	0.083
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005	0.060	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	50	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	0.04	0.05	<0.01
a-Net Acidity	moles H+/T	5	<5	24	32	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	1.8	2.4	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.08	0.01	0.01	-0.05
a-Net Acidity without ANCE	moles H+/T	5	<5	24	32	9
Liming Rate without ANCE	kg CaCO3/T	0.1	<0.1	1.8	2.4	NA

CE133191 R0

	Sam Sa Sa Sa	aple Number Imple Matrix Sample Date Ample Name	CE133191.005 Soil 20 Apr 2018 BH1M 3.5-3.6	CE133191.006 Soil 20 Apr 2018 BH1M 4.4-4.5	CE133191.007 Soil 20 Apr 2018 BH2M 0.9-1.0	CE133191.008 Soil 20 Apr 2018 BH2M 1.4-1.5
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	16	9.3	19	17

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

рН КСІ	pH Units	-	6.0	6.6	6.6	6.7
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Sulphur (SKCI)	%w/w	0.005	0.010	0.005	0.006	<0.005
Calcium (CaKCl)	%w/w	0.005	0.010	0.014	0.17	0.10
Magnesium (MgKCI)	%w/w	0.005	0.086	0.054	0.073	0.052

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	6.9	8.7	7.1	6.9
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
TPA as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.25	0.25	0.45	0.30
ANCE as moles H+/tonne	moles H+/T	5	50	50	90	60
ANCE as S % W/W	%w/w S	0.01	0.08	0.08	0.14	0.10
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	<0.005	<0.005	0.015	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5	9	<5
Sulphur (Sp)	%w/w	0.005	0.013	0.005	0.021	<0.005
Calcium (Cap)	%w/w	0.005	0.012	0.020	0.20	0.11
Reacted Calcium (CaA)	%w/w	0.005	<0.005	0.006	0.021	0.006
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	10	<5
Magnesium (Mgp)	%w/w	0.005	0.091	0.059	0.083	0.059
Reacted Magnesium (MgA)	%w/w	0.005	0.005	<0.005	0.010	0.007
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	8	6
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
a-Net Acidity	moles H+/T	5	<5	<5	<5	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.05	-0.05	-0.09	-0.06
a-Net Acidity without ANCE	moles H+/T	5	7	<5	9	<5
Liming Rate without ANCE	kg CaCO3/T	0.1	NA	<0.1	NA	<0.1

CE133191 R0

	Sam Sa Sa	nple Number Imple Matrix Sample Date ample Name	CE133191.009 Soil 20 Apr 2018 BH2M 2.4-2.5	CE133191.010 Soil 20 Apr 2018 BH2M 3.5-3.6	CE133191.011 Soil 20 Apr 2018 BH2M 4.0-4.1	CE133191.012 Soil 20 Apr 2018 BH2M 4.5-4.6
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	14	15	16	14

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

pH KCI	pH Units	-	7.0	6.6	6.5	6.7
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Sulphur (SKCI)	%w/w	0.005	<0.005	<0.005	<0.005	0.006
Calcium (CaKCl)	%w/w	0.005	0.11	0.011	0.009	0.018
Magnesium (MgKCI)	%w/w	0.005	0.073	0.067	0.063	0.059

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	7.0	6.7	6.6	6.7
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
TPA as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.40	0.25	0.25	0.25
ANCE as moles H+/tonne	moles H+/T	5	80	50	50	50
ANCE as S % W/W	%w/w S	0.01	0.13	0.08	0.08	0.08
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.006	<0.005	<0.005	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Sulphur (Sp)	%w/w	0.005	0.010	0.007	0.005	0.010
Calcium (Cap)	%w/w	0.005	0.12	0.012	0.010	0.021
Reacted Calcium (CaA)	%w/w	0.005	0.019	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	10	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.082	0.071	0.069	0.070
Reacted Magnesium (MgA)	%w/w	0.005	0.010	<0.005	0.007	0.010
Reacted Magnesium (MgA)	moles H+/T	5	8	<5	5	8
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
a-Net Acidity	moles H+/T	5	<5	<5	<5	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.08	-0.05	-0.05	-0.05
a-Net Acidity without ANCE	moles H+/T	5	<5	<5	<5	<5
Liming Rate without ANCE	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1

	Sam Sa Si	nple Numbe Imple Matri Sample Dat ample Nam	er CE133191.013 x Soil e 20 Apr 2018 e BH8M 1.9-2.0	CE133191.014 Soil 20 Apr 2018 BH8M 2.4-2.5
Parameter	Units	LOR		
Moisture Content Method: AN002 Tested: 26/4/2018				
% Moisture	%w/w	0.5	18	17

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

pH KCI	pH Units	-	4.5	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	2.3	2.5
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	47	50
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.08	0.08
Sulphur (SKCI)	%w/w	0.005	0.037	0.048
Calcium (CaKCI)	%w/w	0.005	0.026	0.021
Magnesium (MgKCI)	%w/w	0.005	0.099	0.11

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	5.0	5.0
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	2.9	3.3
TPA as moles H+/tonne	moles H+/T	5	60	67
TPA as S % W/W	%w/w S	0.01	0.10	0.11
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	12	17
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	0.61	0.86
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	0.02	0.03
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.010	0.017
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	6	10
Sulphur (Sp)	%w/w	0.005	0.047	0.065
Calcium (Cap)	%w/w	0.005	0.029	0.025
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.10	0.11
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	0.008
Reacted Magnesium (MgA)	moles H+/T	5	<5	6
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-

s-Net Acidity	%w/w S	0.01	0.09	0.10
a-Net Acidity	moles H+/T	5	53	60
Liming Rate	kg CaCO3/T	0.1	4.0	4.5
Verification s-Net Acidity	%w/w S	-20	0.00	0.01
a-Net Acidity without ANCE	moles H+/T	5	53	60
Liming Rate without ANCE	kg CaCO3/T	0.1	4.0	4.5

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
рН КСІ	LB055913	pH Units	-	5.8	0 - 2%	101%
Titratable Actual Acidity	LB055913	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB055913	moles H+/T	5	<5	0%	92%
Titratable Actual Acidity (TAA) S%w/w	LB055913	%w/w S	0.01	<0.01	0%	92%
Sulphur (SKCI)	LB055913	%w/w	0.005	<0.005	0%	96%
Calcium (CaKCl)	LB055913	%w/w	0.005	<0.005	2%	92%
Magnesium (MgKCI)	LB055913	%w/w	0.005	<0.005	1 - 2%	87%

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Peroxide pH (pH Ox)	LB055910	pH Units	-	6.1	0 - 10%	105%
TPA as kg H₂SO₄/tonne	LB055910	kg H2SO4/T	0.25	<0.25	0%	99%
TPA as moles H+/tonne	LB055910	moles H+/T	5	<5	0%	99%
TPA as S % W/W	LB055910	%w/w S	0.01	<0.01	0%	99%
ANCE as % CaCO ₃	LB055910	% CaCO3	0.01	<0.01	0 - 13%	
ANCE as moles H+/tonne	LB055910	moles H+/T	5	<5	0 - 13%	
ANCE as S % W/W	LB055910	%w/w S	0.01	<0.01	0 - 13%	
Sulphur (Sp)	LB055910	%w/w	0.005	<0.005	3 - 6%	86%
Calcium (Cap)	LB055910	%w/w	0.005	<0.005	2 - 3%	108%
Magnesium (Mgp)	LB055910	%w/w	0.005	<0.005	1 - 4%	91%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES _

IS	Insufficient sample for analysis.	LOR	Limit of Reporting
LNR	Sample listed, but not received.	↑↓	Raised or Lowered Limit of Reporting
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance
	performance of this service.	QFL	QC result is below the lower tolerance
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte
		NVL	Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.